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Abstract. We discuss the difference between n-dimensional regularization and n-dimensional reduction
for processes in QCD which have an additional mass scale. Examples are heavy flavor production in
hadron–hadron collisions or on-shell photon–hadron collisions where the scale is represented by the mass
m. Another example is electroproduction of heavy flavors where we have two mass scales given by m and
the virtuality of the photon Q =

√−q2. Finally we study the Drell–Yan process where the additional scale
is represented by the virtuality Q =

√
q2 of the vector boson (γ∗, W, Z). The difference between the two

schemes is not accounted for by the usual oversubtractions. There are extra counter terms which multiply
the mass scale dependent parts of the Born cross sections. In the case of the Drell–Yan process it turns
out that the off-shell mass regularization agrees with n-dimensional regularization.

PACS. 11.15.Bt, 12.38.Bx, 13.85.Ni

Here we discuss the consistency between n-dimensional
regularization and n-dimensional reduction for processes
in quantum chromodynamics (QCD) which have an addi-
tional mass scale. This paper is a continuation of earlier
work which dealt with jet physics in hadron–hadron colli-
sions where no additional mass scale is present [1, 2]. The
method of n-dimensional regularization was originally in-
troduced in [3] with one exception: that the number of
degrees of freedom of the gluon is now taken to be n − 2.
All numerators of virtual and radiative graphs are repre-
sented in n dimensions. Likewise the loop integrals and
phase space integrals are evaluated in n dimensions. For
the gluon spin average one has the factor 1/(n − 2). The
method of n-dimensional reduction was proposed in [4] (see
also [5]). Apart from the number of external dimensions
which is 4 instead of n (see Table 1) the numerators for vir-
tual and radiative graphs are now presented for n equal to
4. However the loop integrals and phase space integrals are
still evaluated in n dimensions. This implies that the tenso-
rial reduction of the loop graphs and phase space integrals
are still done in n dimensions. Only traces and the usual
Lorentz algebra are done in four dimensions. The gluon spin
average factor is now 1/2. We compare the two schemes in
Table 1. If we perform both regularization techniques the
usual divergences which appear in next-to-leading order
(NLO) calculations are of the ultraviolet (UV), infrared
(IR) and collinear (C) type and produce pole terms of the
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Table 1. Definitions of the numbers of degees of freedom in
the two regularization prescriptions

n-dim. n-dim.
regularization reduction

number of internal dimensions n n

number of external dimensions n 4
number of internal gluons n − 2 2
number of external gluons n − 2 2
number of internal quarks 2 2
number of external quarks 2 2

type 1/(n−4)k. After cancelling the IR and the final state
C divergences by adding the results for the loop graphs
to the squares of the radiative graphs we are left with the
UV singularities and the initial state C divergences. This is
true for inclusive processes only. Then we have to perform
mass renormalization and coupling constant renormaliza-
tion to get rid of the UV divergences. In this paper we
choose the on-mass-shell scheme for mass renormalization
in both regularization procedures, where

m̂ = m (1)

×
[
1 + CF

αs

4π

(
6

n − 4
+ 3γE − 3 ln 4π − 4 − 3 ln

µ2

m2

)]
.

Here m̂ and m denote the bare and renormalized mass
respectively. Coupling constant renormalization is achieved
in n-dimensional regularization in the MS scheme by



200 J. Smith, W.L. van Neerven: The difference between n-dimensional regularization and n-dimensional reduction

α̂s = αs

[
1 +

αs

4π
β0

{
2

n − 4
+ γE − ln 4 π

}]
,

β0 =
11
3

CA − 4
3

Tf nf , (2)

where α̂s and αs denote the bare and renormalized cou-
pling constant respectively. The initial state C singularities
are removed via mass factorization. The latter is achieved
by subtracting the Born cross sections convoluted with
kernels in which the residues of the pole terms are given
by the splitting functions Pij (for the normalization see
(5.9) in [6]). Choosing the MS scheme in n-dimensional
regularization we have

Γij(x) = δij δ(1 − x) (3)

+
αs

4π

[
1
2

Pij(x)
(

2
n − 4

+ γE − ln 4π
)]

.

It is clear that both regularization procedures lead to fi-
nite results which are however different. These differences
can be accounted for by performing an additional finite
coupling constant renormalization and a finite mass fac-
torization in the case of n-dimensional reduction. Here
we use

α̂s = αs (4)

×
[
1 +

αs

4π

{
β0

(
2

n − 4
+ γE − ln 4 π

)
+ CA

1
3

}]
,

and

Γij(x) = δij δ(1 − x) (5)

+
αs

4π

[
1
2

Pij(x)
(

2
n − 4

+ γE − ln 4π
)

+ Zij(x)
]

,

with [7]1

Z =
(

Zqq Zqg

Zgq Zgg

)
(6)

=
(

CF [−2 + 2 x + δ(1 − x)] Tf [−4 x + 4 x2]
CF [−2 x] CA [δ(1 − x)/3]

)
.

For SU(N) we have CA = N , CF = (N2 − 1)/2 N and
Tf = 1/2. In QCD we have N = 3.

In this paper we shall concentrate on the radiative
graphs and reserve some comments on the loop graphs
for the end. This implies that we will limit our discussions
to the regular parts of the kernels Γij and postpone the
treatment of the singular parts represented by the δ(1−x)
terms to later on. With the above finite coupling con-
stant renormalization and finite mass factorization the jet
cross sections in hadron–hadron collisions [1, 2] could be
brought into agreement with each other. However for pro-
cesses which have an additional mass scale this was not

1 In [7] the −4 x + 4 x2 must be put in the upper right-
hand corner
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Fig. 1. t-channel graphs for the heavy flavor production pro-
cesses g + g → Q + Q̄ + g and g + q → Q + Q̄ + q

successful [8]. Here we have additional terms which however
only multiply the mass dependent parts of the Born cross
sections. Therefore these are not finite mass factorizations
because they would involve the whole Born cross sections.
These additional terms are given by

Ki = Ci
αs

4π

[
−4

1 − x

x

]
, Cq = CF , Cg = CA , (7)

and are universal. Careful examination shows that they
only occur for unpolarized processes which have a gluon
exchange in a t-channel or a u-channel graph; see for in-
stance the diagrams in Fig. 1. The terms are of the type
m2/t2 or m2/u2 where m is the additional mass scale. For
polarized processes this phenomenon does not occur be-
cause these terms do not exist. This can be inferred from
(7) because of the term 1/x which is characteristic for
unpolarized processes which have a gluon exchange in the
t-channel or u-channel. We now examine specific reactions.

Let us start with heavy flavor production in hadron–
hadron collisions. In [8] the cross sections were calculated in
both regularization schemes. For the gg channel the Born
cross section can be written as follows (see (2.5)–(2.11)
in [8])

g(k1) + g(k2) → Q(p1) + Q̄(p2) ,

s = (k1 + k2)2 , t1 = (k2 − p2)2 − m2 ,

u1 = (k1 − p2)2 − m2 ,

s2 d2σ
(0)
gg

dt1du1
= s2 d2σ

(0)
gg,O

dt1du1
+ s2 d2σ

(0)
gg,K

dt1du1
,

s2 d2σ
(0)
gg,O

dt1du1
= π α2

s
N

2 (N2 − 1)

[
t21 + u2

1

s2

]

×BQED δ(s + t1 + u1) ,

s2 d2σ
(0)
gg,K

dt1du1
= −π α2

s
1

2 N (N2 − 1)

×BQED δ(s + t1 + u1) ,

BQED =
t1
u1

+
u1

t1
+

4 m2 s

t1 u1

(
1 − m2 s

t1 u1

)
. (8)

We encounter for the first time differences between n-
dimensional regularization and n-dimensional reduction in
the (NLO) gg cross sections (see (6.16) and (6.17) in [8]).
They are represented by the terms Kg convoluted with the
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mass dependent parts of the Born cross sections indicated
by the subscript m

s2 d2σ
(1)
gg,i

dt1du1

∣∣∣∣∣
reg

= s2 d2σ
(1)
gg,i

dt1du1

∣∣∣∣∣
red

+ 2 Kg ⊗ s2 d2σ
(0)
gg,i

dt1du1

∣∣∣∣∣
m

,

i = O, K , (9)

where the symbol ⊗ denotes the convolution integral. The
gg Born cross sections can also be written in a different
way, namely

s2 d2σ
(0)
gg,F

dt1du1
= π α2

s
CF

N2 − 1
BQED δ(s + t1 + u1) ,

s2 d2σ
(0)
gg,A

dt1du1
= −π α2

s
CA

N2 − 1

(
t1u1

s2

)

×BQED δ(s + t1 + u1) . (10)

Moreover we have the Born cross section for the qq̄ → QQ̄
reaction

s2 d2σ
(0)
qq̄

dt1du1
= π α2

s
CF

N
AQED δ(s + t1 + u1) ,

AQED =
t21 + u2

1

s2 +
2 m2

s
. (11)

In this way (4.23) in [9] can be written as

s2 d2σ
(1)
gq̄,F

dt1du1

∣∣∣∣∣
reg

= s2 d2σ
(1)
gq̄,F

dt1du1

∣∣∣∣∣
red

+ Zgq ⊗ s2 d2σ
(0)
gg,F

dt1du1
(12)

+Zqg ⊗ s2 d2σ
(0)
qq̄

dt1du1
+ Kq ⊗ s2 d2σ

(0)
gg,F

dt1du1

∣∣∣∣∣
m

,

and (4.24) becomes equal to

s2 d2σ
(1)
gq̄,A

dt1du1

∣∣∣∣∣
reg

= s2 d2σ
(1)
gq̄,A

dt1du1

∣∣∣∣∣
red

+ Zgq ⊗ s2 d2σ
(0)
gg,A

dt1du1

+Kq ⊗ s2 d2σ
(0)
gg,A

dt1du1

∣∣∣∣∣
m

. (13)

Both cross sections involve extra terms which are propor-
tional to Kq convoluted with the mass dependent parts of
the cross sections. Finally the qq̄ cross section behaves in
a normal way and (4.8) in [9] becomes

s2 d2σ
(1)
qq̄,F

dt1du1
reg = s2 d2σ

(1)
qq̄,F

dt1du1
red + 2 Zqq ⊗ s2 d2σ

(0)
qq̄

dt1du1
. (14)

The next process is electroproduction of heavy flavors.
Here two mass scales are involved i.e. the heavy flavor mass
m and the virtuality of the off-shell photon Q2 = −q2. The
Born cross sections for the transverse (G) and longitudinal
(L) parts are (see (2.14) and (2.15) in [10])

γ∗(q) + g(k1) → Q(p1) + Q̄(p2) ,

s = (q + k1)2 = s′ + q2 ,

t1 = (k1 − p2)2 − m2 ,

u1 = (q − p2)2 − m2 = u′
1 + q2 ,

s′2 d2σ
(0)
i,g

dt1du1
= π e2

H α αs ai Bi,QED δ(s′ + t1 + u1) ,

i = G, L , aG = 1 , aL = 2 ,

BG,QED =
t1
u1

+
u1

t1
+

4 m2 s′

t1 u1

(
1 − m2 s′

t1 u1

)

+
2 s′ q2

t1 u1
+

2 q4

t1 u1

+
2 m2 q2

t1 u1

(
2 − s

′2

t1 u1

)
,

BL,QED = − 4 q2

s′

(
1 − q2

s′ − m2 s′

t1 u1

)
,

q2 = −Q2 . (15)

The differences between n-dimensional regularization and
n-dimensional reduction are visible in the NLO off-shell
photon–gluon fusion processes. Equations (4.7) and (4.8)
in [10] are equal to

s2 d2σ
(1)
i,g

dt1du1

∣∣∣∣∣
reg

= s2 d2σ
(1)
i,g

dt1du1

∣∣∣∣∣
red

+ Kg ⊗ s2 d2σ
(0)
i,g

dt1du1

∣∣∣∣∣
m,Q

,

i = G, L , (16)

where the second terms of the above equation contains all
pieces proportional to m2 and q2 in the Born cross sections
in (15). For the Bethe–Heitler process (A1) in off-shell
photon–quark scattering we see the same phenomenon.
Equation (4.11) in [10] becomes

s2 d2σ
(1)
i,q,A1

dt1du1

∣∣∣∣∣
reg

= s2 d2σ
(1)
i,q,A1

dt1du1

∣∣∣∣∣
red

+ Zgq ⊗ s2 d2σ
(0)
i,g

dt1du1

+ Kq ⊗ s2 d2σ
(0)
i,g

dt1du1

∣∣∣∣∣
m,Q

, i = G, L .
(17)

For i = G we get the same in the case of on-shell photon–
hadron production (q2 = 0) [11] except that now also the
Compton process (A2) gets a collinear divergence. The dif-
ference between both regularizations in (4.17) of [11] be-
comes

s2 d2σ
(1)
γq,A2

dt1du1

∣∣∣∣∣
reg

= s2 d2σ
(1)
γq,A2

dt1du1

∣∣∣∣∣
red

+Zqg ⊗s2 d2σ
(0)
qq

dt1du1
, (18)

which is of the usual form.
Finally we turn our attention to the Drell–Yan process.

We look at the differential distributions of the vector boson
with momentum q. The cross sections have been calculated
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in n-dimensional regularization in [12, 13]. We have also
calculated them using n-dimensional reduction. The Born
processes and Born cross sections are given by

q(p1) + q̄(p2) → γ∗(q) + g(k) ,

q(p1) + g(p2) → γ∗(q) + q(k) ,

s = (p1 + p2)2 , t = (p1 − q)2 ,

u = (p2 − q)2 , q2 = Q2 ,

s2 d2W
(0)
qq̄

dtdu
= αs

CF

N

[
4 s Q2 + 2 t2 + 2 u2

t u

]

×δ(s + t + u − Q2) ,

s2 d2W
(0)
qg

dtdu

= αs
Tf

N

[
− 4 Q2 (Q2 − s − u) + 2 s2 + 2 u2

s u

]

×δ(s + t + u − Q2) . (19)

The NLO qq̄ process involves no problem. We find

s2 d2W
(1)
qq̄

dtdu

∣∣∣∣∣
reg

= s2 d2W
(1)
qq̄

dtdu

∣∣∣∣∣
red

+ 2 Zqq ⊗ s2 d2W
(0)
qq̄

dtdu
. (20)

However for the NLO qg and qq subprocesses differences
between n-dimensional regularization and n-dimensional
reduction appear again and equal the mass (here Q2) de-
pendent part of the Born cross sections convoluted with
either Kg (qg) or Kq (qq).

s2 d2W
(1)
qg

dtdu

∣∣∣∣∣
reg

= s2 d2W
(1)
qg

dtdu

∣∣∣∣∣
red

+ Zqq ⊗ s2 d2W
(0)
qg

dtdu
(21)

+Zqg ⊗ s2 d2W
(0)
qq̄

dtdu
+ Kg ⊗ s2 d2W

(0)
qg

dtdu

∣∣∣∣∣
Q

,

s2 d2W
(1)
qq

dtdu

∣∣∣∣∣
reg

= s2 d2W
(1)
qq

dtdu

∣∣∣∣∣
red

+ 2 Zgq ⊗ s2 d2W
(0)
qg

dtdu

+2 Kq ⊗ s2 d2W
(0)
qg

dtdu

∣∣∣∣∣
Q

. (22)

Finally the NLO gg subprocess behaves like the qq̄ sub-
process and does need this extra term, so

s2 d2W
(1)
gg

dtdu

∣∣∣∣∣
reg

= s2 d2W
(1)
gg

dtdu

∣∣∣∣∣
red

+ 2 Zqg ⊗ s2 d2W
(0)
qg

dtdu
. (23)

In all the above reactions we observe that when the mass
dependent part of the cross section appears convoluted
with Kk (k = q, g) we also encounter the exchange of a
gluon in t- or u-channel graphs.

To decide which regularization prescription is correct
we try out another regularization technique. Here we choose

the off-shell technique [14–16] which is defined so that all
external particles are taken off-shell p2

i < 0. The intrinsic
particle masses are equal to zero and the collinear diver-
gences appear as ln(−Q2/p2). The kernels Γij become equal
to the operator matrix elements where the external legs
are put off-shell. In this case the regular part of Γij in the
MS scheme becomes

Γij(x) = δij δ(1 − x) (24)

+
αs

4π

[
1
2

Pij(x) ln
(

µ2

−x (1 − x) p2

)
+ Zij(x)

]
,

with the finite renormalization Z equal to

Z(x) =
(

CF [−4 + 2 x] Tf [−2 − 4 x (1 − x)]
CF [(−4 + 2 x − 2 x2)/x] CA [(5 x − 4)/x]

)
.

(25)
We omit the δ(1−x) terms in Zij because they concern the
soft-plus-virtual gluon contributions. These terms are very
complicated in the off-shell approach [17]. Substituting Γij

in the above equations we observe that Ki = 0, in other
words we get the same as n-dimensional regularization.
Apparently the n − 4 terms appearing in the numerator
by use of n-dimensional regularization, which are multi-
plied by pole terms 1/(n − 4), mimic analogous terms in
the numerator which are proportional to p2 in the case
of off-shell regularization and are multiplied by 1/p2. The
latter terms arise in those parts of the cross sections which
are proportional to p2/t2 or p2/u2. Therefore one cannot
omit these terms. In n-dimensional reduction the n − 4
terms are not present and p2 = 0 is put at the beginning.
This leads us to the conclusion that for QCD processes
with an additional mass scale n-dimensional reduction is
wrong unless one wants to add an additional mass fac-
torization which however is not proportional to the whole
Born cross section.

Finally we have also studied the soft-plus-virtual gluon
contributions in the n-dimensional regularization and n-
dimensional reduction methods. Since in the loop graphs
UV divergences also appear we only get consistency be-
tween both regularizations if we choose an N = 1 super-
symmetry where the quarks are now Majorana fermions in
the adjoint representation. Therefore CA = CF = nf = N
for SU(N). For the Drell–Yan qq̄ process we get consis-
tency provided we implement the finite coupling constant
renormalization in (4) and the finite mass factorization in
(6) for the δ(1 − x) terms. However for the qg process we
get an inconsistency unless we put a factor of 3/2 instead of
a one in the coefficient of the term containing the δ(1 − x)
function in Zqq of (6). This is in disagreement with what
we found for the Drell–Yan qq̄ process and with the jet
processes in [1, 2]2. In conclusion we find a disagreement
in the radiative part of the NLO cross sections between
n-dimensional regularization and n-dimensional reduction
for processes which involve an additional mass scale. How-
ever the off-shell regularization method indicates that n-
dimensional regularization yields the correct answer.

2 After the submission of this paper our attention was called
to a similar phenomenon discovered in [18].



J. Smith, W.L. van Neerven: The difference between n-dimensional regularization and n-dimensional reduction 203

References

1. Z. Kunszt, A. Signer, Z. Trócsányi, Nucl. Phys. B 411,
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